HTTP1.0、HTTP1.1、HTTP2.0和HTTP3.0的特点及其区别
前言
本文将从HTTP不断发展的时间线来讲解与其相关的知识点,其中包括HTTP1.0,HTTP1.1,HTTP2.0,QUIC,HTTP3.0等,文章中内容涉及面较广,不会特别深入某个知识点来延伸,希望各位读者都能有所收获。
HTTP是Hyper Text Transfer Protocol(超文本传输协议)的缩写。它的发展是万维网协会(World Wide Web Consortium)和Internet工作小组IETF(Internet Engineering Task Force)合作的结果,(他们)最终发布了一系列的RFC,RFC 1945定义了HTTP/1.0版本。其中最著名的就是RFC 2616。RFC 2616定义了普遍使用的一个版本——HTTP 1.1。
HTTP协议(HyperText Transfer Protocol,超文本传输协议)是用于从WWW服务器传输超文本到本地浏览器的传送协议。它可以使浏览器更加高效,使网络传输减少。它不仅保证计算机正确快速地传输超文本文档,还确定传输文档中的哪一部分,以及哪部分内容首先显示。HTTP协议通常承载于TCP协议之上,有时也承载于TLS或SSL协议层之上,这个时候,就成了我们常说的HTTPS。

一、HTTP1.0
1.0的HTTP版本,是一种无状态,无连接的应用层协议。 HTTP1.0规定浏览器和服务器保持短暂的链接。浏览器每次请求都需要与服务器建立一个TCP连接,服务器处理完成以后立即断开TCP连接(无连接),服务器不跟踪也每个客户单,也不记录过去的请求(无状态)。这种无状态性可以借助cookie/session机制来做身份认证和状态记录。
HTTP1.0存在的问题
无法复用连接
每次发送请求,都需要进行一次TCP连接,而TCP的连接释放过程又是比较费事的。这种无连接的特性会使得网络的利用率变低。
队头阻塞(head of line blocking)
由于HTTP1.0规定下一个请求必须在前一个请求响应到达之前才能发送,假设前一个请求响应一直不到达,那么下一个请求就不发送,后面的请求就阻塞了。
二、HTTP1.1
HTTP1.1继承了HTTP1.0的简单,克服了HTTP1.0性能上的问题。
1、长连接
HTTP1.1增加Connection字段,通过设置Keep-Alive保持HTTP连接不断卡。避免每次客户端与服务器请求都要重复建立释放建立TCP连接。提高了网络的利用率。如果客户端想关闭HTTP连接,可以在请求头中携带Connection:false来告知服务器关闭请求。
2、管线化(pipelining)
HTTP管线化(英语:HTTP pipelining)是将多个 HTTP 请求(request)整批提交的技术,而在发送过程中不需先等待服务器的回应。
流水线操作建立在长连接之上,可以将所有的 HTTP 请求一次性发出,而无需关心上一次发送请求的状态,虽然说客户端一次性能够发出所有的请求,但是在服务端接收到的请求还是一一进行处理的,如果当服务端返回的其中一个响应阻塞后,接下来的响应也会被阻塞。
3、分块传输
在长链接上,服务器可能会给浏览器发送一个包含多个资源的字节流应答,浏览器也有可能在请求流中携带多个资源。请求和应答时,必须在包头中说明本包的字节 数,这样接收者能够根据这个值截断流读取有效数据。而实际情况是,服务器和浏览器在组包的时候并不能确切得知道本包的字节数。比如,Servlet在应答 请求的时候,并不必须等到所有事务处理都完成,而是可以先返回准备好的几个字节,等其他事务处理完了再返回这些迟到的事务产生的数据。这种情况需要让接收 者知道如何截取数据,如果包头没有包的字节数数据的话。在HTTP1.0时代,服务器端只好把 content-length 字段留空,然后继续返回字节流。数据发送完成后,简单关闭连接,在结尾处加一个-1表示文件流结束了。HTTP1.1使用了一个特殊的头字段 transfer-encoding:chunked 来标识本次流传输是分块进行的,每一块的长度以16进制的形式写在块头,回车符之前。每次以分块模式传输的数据,最后一块的的字节数为0。
4、缓存处理
在HTTP1.0中主要使用header里的If-Modified-Since,Expires来做为缓存判断的标准,HTTP1.1则引入了更多的缓存控制策略例如Entity tag,If-Unmodified-Since, If-Match, If-None-Match等更多可供选择的缓存头来控制缓存策略。此外,HTTP1.1还加入了缓存处理(强缓存和协商缓存),新的字段如cache-control,支持断点传输,以及增加了Host字段(使得一个服务器能够用来创建多个Web站点)。
三、HTTP2.0
HTTP2.0大幅度的提高了web性能,在HTTP1.1完全语义兼容的基础上,进一步减少了网络的延迟。实现低延迟高吞吐量。对于前端开发者而言,减少了优化工作。
1、二进制分帧
在不改变HTTP1.x的语义、方法、状态码、URL以及首部字段的情况下,HTTP2.0是怎样突破HTTP1.1的性能限制,改进传输性能,实现低延迟高吞吐量的呢?关键之一就是在应用层(HTTP)和传输层(TCP)之间增加一个二进制分帧层。
在整理二进制分帧及其作用的时候我们先来铺垫一点关于帧的知识:
- 帧:HTTP2.0通信的最小单位,所有帧都共享一个8字节的首部,其中包含帧的长度、类型、标志、还有一个保留位,并且至少有标识出当前帧所属的流的标识符,帧承载着特定类型的数据,如HTTP首部、负荷、等等。
- 消息:比帧大的通讯单位,是指逻辑上的HTTP消息,比如请求、响应等。由一个或多个帧组成
- 流:比消息大的通讯单位。是TCP连接中的一个虚拟通道,可以承载双向的消息。每个流都有一个唯一的整数标识符
HTTP2.0中所有加强性能的核心是二进制传输,在HTTP1.x中,我们是通过文本的方式传输数据。基于文本的方式传输数据存在很多缺陷,文本的表现形式有多样性,因此要做到健壮性考虑的场景必然有很多,但是二进制则不同,只有0和1的合,因此选择了二进制传输,实现方便且健壮。
在HTTP2.0中引入了新的编码机制,所有传输的数据都会被分割,并采用二进制格式编码。

为了保证HTTP不受影响,那就需要在应用层(HTTP2.0)和传输层(TCP or UDP)之间增加一个二进制分帧层。在二进制分帧层上,HTTP2.0会将所有传输的信息分为更小的消息和帧,并采用二进制格式编码,其中HTTP1.x的首部信息会被封装到Headers帧,而Request Body则封装到Data帧。
2、首部压缩
HTTP1.1并不支持HTTP首部压缩,为此SPDY和HTTP2.0出现了。SPDY是用的是DEFLATE算法,而HTTP2.0则使用了专门为首部压缩设计的HPACK算法。HTTP每次通讯(请求或响应)都会携带首部信息用于描述资源属性。在HTTP1.0中,我们使用文本的形式传输header,在header中携带cookie的话,每次都需要重复传输几百到几千的字节,这着实是一笔不小的开销。
在HTTP2.0中,我们使用了HPACK(HTTP2头部压缩算法)压缩格式对传输的header进行编码,减少了header的大小。并在两端维护了索引表,用于记录出现过的header,后面在传输过程中就可以传输已经记录过的header的键名,对端收到数据后就可以通过键名找到对应的值。
HTTP2.0在客户端和服务器端使用“首部表”来跟踪和存储之前发送的键-值对,对于相同的数据,不再通过每次请求和响应发送;通信期间几乎不会改变的通用键-值对(用户代理、可接受的媒体类型,等等)只需发送一次。事实上, 如果请求中不包含首部(例如对同一资源的轮询请求),那么首部开销就是零字节。此时所有首部都自动使用之前请求发送的首部。
如果首部发生变化了,那么只需要发送变化了数据在Headers帧里面,新增或修改的首部帧会被追加到“首部表”,如下图所示。首部表在 HTTP2.0的连接存续期内始终存在,由客户端和服务器共同渐进地更新。

3、多路复用
多路复用允许同时通过单一的 HTTP连接发起多重的请求-响应消息,这样就可以实现多流并行而不用依赖建立多个 TCP 连接,如下图所示。 HTTP/2 引入二进制数据帧和流的概念,其中帧对数据进行顺序标识,这样浏览器收到数据之后,就可以按照序列对数据进行合并,而不会出现合并后数据错乱的情况。同样是因为有了序列,服务器就可以并行的传输数据。

4、服务器推送
在HTTP/1.1中,当浏览器请求一个网页后,服务器将会发回HTML,服务器需要等待浏览器解析HTML后发送所有内嵌资源的请求,在浏览器发送了资源的请求后服务器才开始发送这些JavaScript、图片和CSS。HTTP/2 的服务器推送所作的工作就是,服务器在收到客户端对某个资源的请求时,会判断客户端十有八九还要请求其他的什么资源,然后一同把这些资源都发送给客户端,即便客户端还没有明确表示它需要这些资源。客户端可以选择把额外的资源放入缓存中(所以这个特点也叫 Cache push),也可以选择发送一个 RST_STREAM frame 拒绝任何它不想要的资源。

服务器推送是 HTTP/2 协议里面,唯一一个需要开发者自己配置的功能。其他功能都是服务器和浏览器自动实现,不需要开发者关心。
服务器推送有一个很麻烦的问题。所要推送的资源文件,如果浏览器已经有缓存,推送就是浪费带宽。即使推送的文件版本更新,浏览器也会优先使用本地缓存。一种解决办法是,只对第一次访问的用户开启服务器推送。下面是 Nginx 官方给出的示例,根据 Cookie 判断是否为第一次访问:
server { listen 443 ssl http2 default_server; ssl_certificate ssl/certificate.pem; ssl_certificate_key ssl/key.pem; root /var/www/html;http2_push_preload on; location = /demo.html { add_header Set-Cookie "session=1"; add_header Link $resources; }}map $http_cookie $resources {"~*session=1""";default"</style.css>; as=style; rel=preload";}
服务器推送可以提高性能,大概会比HTTP/1.1快了几百毫秒,提升程度也不是特别多,而且,也不建议一次推送太多资源,这样反而会拖累性能,因为浏览器不得不处理所有推送过来的资源。只推送 CSS 样式表可能是一个比较好的选择。
5、主动重置链接
HTTP消息被送出之后,我们就很难中断它了。当然,通常我们可以断开整个TCP链接(但也不总是可以这样),但这样导致的代价就是需要重新通过三次握手建立一个新的TCP连接。比如,很多app客户端都有取消图片下载的功能场景,对于http1.x来说,是通过设置tcp segment里的reset flag来通知对端关闭连接的,这种方式会直接断开连接,下次再发请求就必须重新建立连接。http2.0引入RST_STREAM类型的frame,使用它来让客户端在已有的连接中发送重置请求,这样可以在不断开连接的前提下取消某个request的stream,即中断或者放弃响应。当浏览器进行页面跳转或者用户取消下载时,它可以防止建立新连接。
四、HTTP3.0
HTTP 3.0,也称作 HTTP over QUIC。核心是 QUIC (读音quick)协议,由 Google 在 2015 年提出的 SPDY v3 演化而来的新协议,传统的 HTTP 协议是基于传输层 TCP 的协议,而 QUIC 是基于传输层 UDP 上的协议,可以定义成:HTTP3.0 基于 UDP 的安全可靠的 HTTP2.0 协议,主要有以下特性:
- 基于 UDP 减少了 TCP 三次握手及 TLS 握手时间
- 解决多路复用丢包时的线头阻塞问题
- 优化重传策略
- 流量控制
- 连接迁移

QUIC协议是什么?
QUIC其实是Quick UDP Internet Connections的缩写,直译为快速UDP互联网连接。
QUIC协议最初由Google的Jim Roskind设计,实施并于2012年部署,在2013年随着实验的扩大而公开宣布,并向IETF进行了描述。
QUIC提高了当前正在使用TCP的面向连接的Web应用程序的性能。它在两个端点之间使用用户数据报协议(UDP)建立多个复用连接来实现此目的。
QUIC的次要目标包括减少连接和传输延迟,在每个方向进行带宽估计以避免拥塞。它还将拥塞控制算法移动到用户空间,而不是内核空间,此外使用前向纠错(FEC)进行扩展,以在出现错误时进一步提高性能。
1、 队头阻塞问题
队头阻塞 Head-of-line blocking(缩写为HOL blocking)是计算机网络中是一种性能受限的现象,通俗来说就是:一个数据包影响了一堆数据包,它不来大家都走不了。
队头阻塞问题可能存在于HTTP层和TCP层,在HTTP1.x时两个层次都存在该问题。
HTTP2.0协议的多路复用机制解决了HTTP层的队头阻塞问题,但是在TCP层仍然存在队头阻塞问题。
TCP协议在收到数据包之后,这部分数据可能是乱序到达的,但是TCP必须将所有数据收集排序整合后给上层使用,如果其中某个包丢失了,就必须等待重传,从而出现某个丢包数据阻塞整个连接的数据使用。
QUIC协议是基于UDP协议实现的,在一条链接上可以有多个流,流与流之间是互不影响的,当一个流出现丢包影响范围非常小,从而解决队头阻塞问题。
2、0RTT 建链
衡量网络建链的常用指标是RTT Round-Trip Time,也就是数据包一来一回的时间消耗。RTT包括三部分:往返传播时延、网络设备内排队时延、应用程序数据处理时延。
一般来说HTTPS协议要建立完整链接包括:TCP握手和TLS握手,总计需要至少2-3个RTT,普通的HTTP协议也需要至少1个RTT才可以完成握手。然而,QUIC协议可以实现在第一个包就可以包含有效的应用数据,从而实现0RTT,但这也是有条件的。
简单来说,基于TCP协议和TLS协议的HTTP2.0在真正发送数据包之前需要花费一些时间来完成握手和加密协商,完成之后才可以真正传输业务数据。但是QUIC则第一个数据包就可以发业务数据,从而在连接延时有很大优势,可以节约数百毫秒的时间。
QUIC的0RTT也是需要条件的,对于第一次交互的客户端和服务端0RTT也是做不到的,毕竟双方完全陌生。因此,QUIC协议可以分为首次连接和非首次连接,两种情况进行讨论。
3、前向安全问题
通俗来说,前向安全指的是密钥泄漏也不会让之前加密的数据被泄漏,影响的只有当前,对之前的数据无影响。
QUIC协议首次连接时先后生成了两个加密密钥,由于config被客户端存储了,如果期间服务端私钥泄漏,那么可以根据公式计算出密钥K。
如果一直使用这个密钥进行加解密,那么就可以用K解密所有历史消息,因此后续又生成了新密钥,使用其进行加解密,当时完成交互时则销毁,从而实现了前向安全。
4、前向纠错
QUIC每发送一组数据就对这组数据进行异或运算,并将结果作为一个FEC包发送出去,接收方收到这一组数据后根据数据包和FEC包即可进行校验和纠错。
5、连接迁移
网络切换几乎无时无刻不在发生。TCP协议使用五元组来表示一条唯一的连接,当我们从4G环境切换到wifi环境时,手机的IP地址就会发生变化,这时必须创建新的TCP连接才能继续传输数据。
QUIC协议基于UDP实现摒弃了五元组的概念,使用64位的随机数作为连接的ID,并使用该ID表示连接。基于QUIC协议之下,我们在日常wifi和4G切换时,或者不同基站之间切换都不会重连,从而提高业务层的体验。